Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Biochem Sci ; 49(5): 445-456, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38433044

RESUMEN

TrkB (neuronal receptor tyrosine kinase-2, NTRK2) is the receptor for brain-derived neurotrophic factor (BDNF) and is a critical regulator of activity-dependent neuronal plasticity. The past few years have witnessed an increasing understanding of the structure and function of TrkB, including its transmembrane domain (TMD). TrkB interacts with membrane cholesterol, which bidirectionally regulates TrkB signaling. Additionally, TrkB has recently been recognized as a binding target of antidepressant drugs. A variety of different antidepressants, including typical and rapid-acting antidepressants, as well as psychedelic compounds, act as allosteric potentiators of BDNF signaling through TrkB. This suggests that TrkB is the common target of different antidepressant compounds. Although more research is needed, current knowledge suggests that TrkB is a promising target for further drug development.


Asunto(s)
Glicoproteínas de Membrana , Receptor trkB , Humanos , Receptor trkB/metabolismo , Receptor trkB/química , Animales , Dominios Proteicos , Transducción de Señal , Antidepresivos/uso terapéutico , Antidepresivos/farmacología , Antidepresivos/química , Antidepresivos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/química
2.
Molecules ; 26(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34208805

RESUMEN

This article presents experimental evidence and computed molecular models of a potential interaction between receptor domain D5 of TrkB with the carboxyl-terminal domain of tetanus neurotoxin (Hc-TeNT). Computational simulations of a novel small cyclic oligopeptide are designed, synthesized, and tested for possible tetanus neurotoxin-D5 interaction. A hot spot of this protein-protein interaction is identified in analogy to the hitherto known crystal structures of the complex between neurotrophin and D5. Hc-TeNT activates the neurotrophin receptors, as well as its downstream signaling pathways, inducing neuroprotection in different stress cellular models. Based on these premises, we propose the Trk receptor family as potential proteic affinity receptors for TeNT. In vitro, Hc-TeNT binds to a synthetic TrkB-derived peptide and acts similar to an agonist ligand for TrkB, resulting in phosphorylation of the receptor. These properties are weakened by the mutagenesis of three residues of the predicted interaction region in Hc-TeNT. It also competes with Brain-derived neurotrophic factor, a native binder to human TrkB, for the binding to neural membranes, and for uptake in TrkB-positive vesicles. In addition, both molecules are located together In Vivo at neuromuscular junctions and in motor neurons.


Asunto(s)
Glicoproteínas de Membrana/química , Metaloendopeptidasas/química , Fármacos Neuroprotectores/química , Oligopéptidos/química , Receptor trkB/química , Toxina Tetánica/química , Animales , Cristalografía por Rayos X , Humanos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/farmacología , Metaloendopeptidasas/metabolismo , Metaloendopeptidasas/farmacología , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Oligopéptidos/metabolismo , Oligopéptidos/farmacología , Dominios Proteicos , Ratas , Ratas Sprague-Dawley , Receptor trkB/metabolismo , Receptor trkB/farmacología , Toxina Tetánica/metabolismo , Toxina Tetánica/farmacología
3.
Cell ; 184(5): 1299-1313.e19, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33606976

RESUMEN

It is unclear how binding of antidepressant drugs to their targets gives rise to the clinical antidepressant effect. We discovered that the transmembrane domain of tyrosine kinase receptor 2 (TRKB), the brain-derived neurotrophic factor (BDNF) receptor that promotes neuronal plasticity and antidepressant responses, has a cholesterol-sensing function that mediates synaptic effects of cholesterol. We then found that both typical and fast-acting antidepressants directly bind to TRKB, thereby facilitating synaptic localization of TRKB and its activation by BDNF. Extensive computational approaches including atomistic molecular dynamics simulations revealed a binding site at the transmembrane region of TRKB dimers. Mutation of the TRKB antidepressant-binding motif impaired cellular, behavioral, and plasticity-promoting responses to antidepressants in vitro and in vivo. We suggest that binding to TRKB and allosteric facilitation of BDNF signaling is the common mechanism for antidepressant action, which may explain why typical antidepressants act slowly and how molecular effects of antidepressants are translated into clinical mood recovery.


Asunto(s)
Antidepresivos/farmacología , Receptor trkB/metabolismo , Animales , Antidepresivos/química , Antidepresivos/metabolismo , Sitios de Unión , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Línea Celular , Colesterol/metabolismo , Embrión de Mamíferos , Fluoxetina/química , Fluoxetina/metabolismo , Fluoxetina/farmacología , Hipocampo/metabolismo , Humanos , Ratones , Modelos Animales , Simulación de Dinámica Molecular , Dominios Proteicos , Ratas , Receptor trkB/química , Corteza Visual/metabolismo
4.
Pharmacol Res ; 165: 105423, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33434621

RESUMEN

Brain derived neurotrophic factor (BDNF) promotes maturation of dopaminergic (DAergic) neurons in the midbrain and positively regulates their maintenance and outgrowth. Therefore, understanding the mechanisms regulating the BDNF signaling pathway in DAergic neurons may help discover potential therapeutic strategies for neuropsychological disorders associated with dysregulation of DAergic neurotransmission. Because estrogen-related receptor gamma (ERRγ) is highly expressed in both the fetal nervous system and adult brains during DAergic neuronal differentiation, and it is involved in regulating the DAergic neuronal phenotype, we asked in this study whether ERRγ ligand regulates BDNF signaling and subsequent DAergic neuronal phenotype. Based on the X-ray crystal structures of the ligand binding domain of ERRγ, we designed and synthesized the ERRγ agonist, (E)-4-hydroxy-N'-(4-(phenylethynyl)benzylidene)benzohydrazide (HPB2) (Kd value, 8.35 µmol/L). HPB2 increased BDNF mRNA and protein levels, and enhanced the expression of the BDNF receptor tropomyosin receptor kinase B (TrkB) in human neuroblastoma SH-SY5Y, differentiated Lund human mesencephalic (LUHMES) cells, and primary ventral mesencephalic (VM) neurons. HPB2-induced upregulation of BDNF was attenuated by GSK5182, an antagonist of ERRγ, and siRNA-mediated ERRγ silencing. HPB2-induced activation of extracellular-signal-regulated kinase (ERK) and phosphorylation of cAMP-response element binding protein (CREB) was responsible for BDNF upregulation in SH-SY5Y cells. HPB2 enhanced the DAergic neuronal phenotype, namely upregulation of tyrosine hydroxylase (TH) and DA transporter (DAT) with neurite outgrowth, both in SH-SY5Y and primary VM neurons, which was interfered by the inhibition of BDNF-TrkB signaling, ERRγ knockdown, or blockade of ERK activation. HPB2 also upregulated BDNF and TH in the striatum and induced neurite elongation in the substantia nigra of mice brain. In conclusion, ERRγ activation regulated BDNF expression and the subsequent DAergic neuronal phenotype in neuronal cells. Our results might provide new insights into the mechanism underlying the regulation of BDNF expression, leading to novel therapeutic strategies for neuropsychological disorders associated with DAergic dysregulation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Neuronas Dopaminérgicas/metabolismo , Congéneres del Estradiol/farmacología , Glicoproteínas de Membrana/biosíntesis , Receptor trkB/biosíntesis , Receptores de Estrógenos/metabolismo , Regulación hacia Arriba/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/química , Línea Celular Tumoral , Neuronas Dopaminérgicas/efectos de los fármacos , Congéneres del Estradiol/química , Femenino , Humanos , Ligandos , Masculino , Glicoproteínas de Membrana/química , Ratones , Ratones Endogámicos C57BL , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Fenotipo , Embarazo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas , Ratas Sprague-Dawley , Receptor trkB/química , Receptores de Estrógenos/química , Regulación hacia Arriba/efectos de los fármacos
5.
Biochem J ; 477(20): 4053-4070, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33043964

RESUMEN

The tropomyosin-related kinase (Trk) family consists of three receptor tyrosine kinases (RTKs) called TrkA, TrkB, and TrkC. These RTKs are regulated by the neurotrophins, a class of secreted growth factors responsible for the development and function of neurons. The Trks share a high degree of homology and utilize overlapping signaling pathways, yet their signaling is associated with starkly different outcomes in certain cancers. For example, in neuroblastoma, TrkA expression and signaling correlates with a favorable prognosis, whereas TrkB is associated with poor prognoses. To begin to understand how activation of the different Trks can lead to such distinct cellular outcomes, we investigated differences in kinase activity and duration of autophosphorylation for the TrkA and TrkB tyrosine kinase domains (TKDs). We find that the TrkA TKD has a catalytic efficiency that is ∼2-fold higher than that of TrkB, and becomes autophosphorylated in vitro more rapidly than the TrkB TKD. Studies with mutated TKD variants suggest that a crystallographic dimer seen in many TrkA (but not TrkB) TKD crystal structures, which involves the kinase-insert domain, may contribute to this enhanced TrkA autophosphorylation. Consistent with previous studies showing that cellular context determines whether TrkB signaling is sustained (promoting differentiation) or transient (promoting proliferation), we also find that TrkB signaling can be made more transient in PC12 cells by suppressing levels of p75NTR. Our findings shed new light on potential differences between TrkA and TrkB signaling, and suggest that subtle differences in signaling dynamics can lead to substantial shifts in the cellular outcome.


Asunto(s)
Neuroblastoma/metabolismo , Receptor trkA/metabolismo , Receptor trkB/metabolismo , Transducción de Señal/genética , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Dominio Catalítico , Diferenciación Celular/genética , Proliferación Celular/genética , Técnicas de Silenciamiento del Gen , Cinética , Mutación , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/farmacología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuroblastoma/enzimología , Neuroblastoma/genética , Células PC12 , Fosforilación , Dominios Proteicos , ARN Interferente Pequeño , Ratas , Receptor trkA/química , Receptor trkA/genética , Receptor trkB/química , Receptor trkB/genética , Receptores de Factores de Crecimiento/genética , Receptores de Factores de Crecimiento/metabolismo , Proteínas Recombinantes , Transducción de Señal/efectos de los fármacos
6.
Blood ; 135(24): 2159-2170, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32315394

RESUMEN

Much of what is known about the neurotrophic receptor tyrosine kinase (NTRK) genes in cancer was revealed through identification and characterization of activating Trk fusions across many tumor types. A resurgence of interest in these receptors has emerged owing to the realization that they are promising therapeutic targets. The remarkable efficacy of pan-Trk inhibitors larotrectinib and entrectinib in clinical trials led to their accelerated, tissue-agnostic US Food and Drug Administration (FDA) approval for adult and pediatric patients with Trk-driven solid tumors. Despite our enhanced understanding of Trk biology in solid tumors, the importance of Trk signaling in hematological malignancies is underexplored and warrants further investigation. Herein, we describe mutations in NTRK2 and NTRK3 identified via deep sequencing of 185 patients with hematological malignancies. Ten patients contained a point mutation in NTRK2 or NTRK3; among these, we identified 9 unique point mutations. Of these 9 mutations, 4 were oncogenic (NTRK2A203T, NTRK2R458G, NTRK3E176D, and NTRK3L449F), determined via cytokine-independent cellular assays. Our data demonstrate that these mutations have transformative potential to promote downstream survival signaling and leukemogenesis. Specifically, the 3 mutations located within extracellular (ie, NTRK2A203T and NTRK3E176D) and transmembrane (ie, NTRK3L449F) domains increased receptor dimerization and cell-surface abundance. The fourth mutation, NTRK2R458G, residing in the juxtamembrane domain, activates TrkB via noncanonical mechanisms that may involve altered interactions between the mutant receptor and lipids in the surrounding environment. Importantly, these 4 activating mutations can be clinically targeted using entrectinib. Our findings contribute to ongoing efforts to define the mutational landscape driving hematological malignancies and underscore the utility of FDA-approved Trk inhibitors for patients with aggressive Trk-driven leukemias.


Asunto(s)
Neoplasias Hematológicas/genética , Glicoproteínas de Membrana/genética , Mutación Puntual , Receptor trkB/genética , Receptor trkC/genética , Animales , Secuencia de Bases , Benzamidas/uso terapéutico , Línea Celular , Resistencia a Antineoplásicos/genética , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/metabolismo , Humanos , Indazoles/uso terapéutico , Metabolismo de los Lípidos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Ratones , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oncogenes , Inhibidores de Proteínas Quinasas/uso terapéutico , Multimerización de Proteína/genética , ARN Interferente Pequeño/genética , Receptor trkB/química , Receptor trkB/metabolismo , Receptor trkC/química , Receptor trkC/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Nat Commun ; 11(1): 1950, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32327658

RESUMEN

BDNF signaling in hypothalamic circuitries regulates mammalian food intake. However, whether BDNF exerts metabolic effects on peripheral organs is currently unknown. Here, we show that the BDNF receptor TrkB.T1 is expressed by pancreatic ß-cells where it regulates insulin release. Mice lacking TrkB.T1 show impaired glucose tolerance and insulin secretion. ß-cell BDNF-TrkB.T1 signaling triggers calcium release from intracellular stores, increasing glucose-induced insulin secretion. Additionally, BDNF is secreted by skeletal muscle and muscle-specific BDNF knockout phenocopies the ß-cell TrkB.T1 deletion metabolic impairments. The finding that BDNF is also secreted by differentiated human muscle cells and induces insulin secretion in human islets via TrkB.T1 identifies a new regulatory function of BDNF on metabolism that is independent of CNS activity. Our data suggest that muscle-derived BDNF may be a key factor mediating increased glucose metabolism in response to exercise, with implications for the treatment of diabetes and related metabolic diseases.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Calcio/metabolismo , Células Cultivadas , Glucosa/metabolismo , Intolerancia a la Glucosa , Humanos , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Ratones Noqueados , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor trkB/química , Receptor trkB/genética , Receptor trkB/metabolismo , Transducción de Señal
8.
Cells ; 8(8)2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31430955

RESUMEN

Receptor tyrosine kinases are believed to be activated through ligand-induced dimerization. We now demonstrate that in cultured neurons, a substantial amount of endogenous TrkB, the receptor for brain-derived neurotrophic factor (BDNF), exists as an inactive preformed dimer, and the application of BDNF activates the pre-existing dimer. Deletion of the extracellular juxtamembrane motif (EJM) of TrkB increased the amount of preformed dimer, suggesting an inhibitory role of EJM on dimer formation. Further, binding of an agonistic antibody (MM12) specific to human TrkB-EJM activated the full-length TrkB and unexpectedly also truncated TrkB lacking ECD (TrkBdelECD365), suggesting that TrkB is activated by attenuating the inhibitory effect of EJM through MM12 binding-induced conformational changes. Finally, in cells co-expressing rat and human TrkB, MM12 could only activate TrkB human-human dimer but not TrkB human-rat TrkB dimer, indicating that MM12 binding to two TrkB monomers is required for activation. Our results support a model that TrkB preforms as an inactive dimer and BDNF induces TrkB conformation changes leading to its activation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Glicoproteínas de Membrana/química , Neuronas/metabolismo , Receptor trkB/química , Secuencias de Aminoácidos , Animales , Células CHO , Membrana Celular/metabolismo , Cricetulus , Neuronas/citología , Células PC12 , Multimerización de Proteína , Ratas
9.
J Med Chem ; 62(4): 1731-1760, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30188734

RESUMEN

The use of kinase-directed precision medicine has been heavily pursued since the discovery and development of imatinib. Annually, it is estimated that around ∼20 000 new cases of tropomyosin receptor kinase (TRK) cancers are diagnosed, with the majority of cases exhibiting a TRK genomic rearrangement. In this Perspective, we discuss current development and clinical applications for TRK precision medicine by providing the following: (1) the biological background and significance of the TRK kinase family, (2) a compilation of known TRK inhibitors and analysis of their cocrystal structures, (3) an overview of TRK clinical trials, and (4) future perspectives for drug discovery and development of TRK inhibitors.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptor trkA/antagonistas & inhibidores , Receptor trkB/antagonistas & inhibidores , Receptor trkC/antagonistas & inhibidores , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Dominio Catalítico , Línea Celular Tumoral , Descubrimiento de Drogas , Humanos , Ratones Endogámicos BALB C , Medicina de Precisión/métodos , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Ratas Sprague-Dawley , Receptor trkA/química , Receptor trkA/metabolismo , Receptor trkB/química , Receptor trkB/metabolismo , Receptor trkC/química , Receptor trkC/metabolismo
10.
Biochem J ; 475(22): 3669-3685, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30366959

RESUMEN

Receptor tyrosine kinases (RTKs) are cell surface receptors which control cell growth and differentiation, and play important roles in tumorigenesis. Despite decades of RTK research, the mechanism of RTK activation in response to their ligands is still under debate. Here, we investigate the interactions that control the activation of the tropomyosin receptor kinase (Trk) family of RTKs in the plasma membrane, using a FRET-based methodology. The Trk receptors are expressed in neuronal tissues, and guide the development of the central and peripheral nervous systems during development. We quantify the dimerization of human Trk-A, Trk-B, and Trk-C in the absence and presence of their cognate ligands: human ß-nerve growth factor, human brain-derived neurotrophic factor, and human neurotrophin-3, respectively. We also assess conformational changes in the Trk dimers upon ligand binding. Our data support a model of Trk activation in which (1) Trks have a propensity to interact laterally and to form dimers even in the absence of ligand, (2) different Trk unliganded dimers have different stabilities, (3) ligand binding leads to Trk dimer stabilization, and (4) ligand binding induces structural changes in the Trk dimers which propagate to their transmembrane and intracellular domains. This model, which we call the 'transition model of RTK activation,' may hold true for many other RTKs.


Asunto(s)
Membrana Celular/metabolismo , Receptor trkA/metabolismo , Receptor trkB/metabolismo , Receptor trkC/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Ligandos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía de Fluorescencia por Excitación Multifotónica , Factor de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Neurotrofina 3 , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Receptor trkA/química , Receptor trkA/genética , Receptor trkB/química , Receptor trkB/genética , Receptor trkC/química , Receptor trkC/genética
11.
Nanoscale ; 9(28): 9797-9804, 2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28682396

RESUMEN

The nanoscale organization of the tropomyosin-related kinase receptor type B (TrkB), a promising therapeutic target for severe neurodegenerative and psychiatric disorders, is examined by stimulated emission depletion (STED) microscopy using the deconvoluted gated STED option. The performed immunofluorescence nanoscopic subdiffraction imaging of the membrane receptor localization reveals that clusters of oligomeric TrkB states and randomly organized nanodomains are formed in the membranes of differentiated human neuroblastoma SH-SY5Y cells, which are studied as an in vitro model of neurodegeneration. Despite that the monomeric (isolated) states of the receptor cannot be distinguished from its dimeric forms in such images, TrkB receptor dimers (or couple of individual monomers) are visualized at super-resolution as single pixels in the magnified Huygens-deconvoluted gated STED images. The clusters of higher-order TrkB oligomers are of dynamic nature rather than of a fixed stoichiometry. The propensity for membrane protein clustering as well as the dissociation of the TrkB receptors nanodomains can be modulated by neurotherapeutic formulations containing ω-3 polyunsaturated docosahexaenoic acid (DHA). Nanomolar concentrations of DHA change the receptor topology and lead to disruption of the cluster phases. This result is of therapeutic importance for TrkB receptor availability upon ligand binding as DHA favours the mobility and the dynamic distribution of the protein populations in the cell membranes.


Asunto(s)
Membrana Celular/ultraestructura , Glicoproteínas de Membrana/química , Receptor trkB/química , Línea Celular Tumoral , Técnica del Anticuerpo Fluorescente , Humanos , Microscopía , Neuroblastoma
12.
Oncotarget ; 8(25): 39945-39962, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28591715

RESUMEN

Deficient mismatch repair (MMR) and microsatellite instability (MSI) contribute to ~15% of colorectal cancer (CRCs). We hypothesized MSI leads to mutations in DNA repair proteins including BRCA2 and cancer drivers including EGFR. We analyzed mutations among a discovery cohort of 26 MSI-High (MSI-H) and 558 non-MSI-H CRCs profiled at Caris Life Sciences. Caris-profiled MSI-H CRCs had high mutation rates (50% vs 14% in non-MSI-H, P < 0.0001) in BRCA2. Of 1104 profiled CRCs from a second cohort (COSMIC), MSH2/MLH1-mutant CRCs showed higher mutation rates in BRCA2 compared to non-MSH2/MLH1-mutant tumors (38% vs 6%, P < 0.0000001). BRCA2 mutations in MSH2/MLH1-mutant CRCs included 75 unique mutations not known to occur in breast or pancreatic cancer per COSMIC v73. Only 5 deleterious BRCA2 mutations in CRC were previously reported in the BIC database as germ-line mutations in breast cancer. Some BRCA2 mutations were predicted to disrupt interactions with partner proteins DSS1 and RAD51. Some CRCs harbored multiple BRCA2 mutations. EGFR was mutated in 45.5% of MSH2/MLH1-mutant and 6.5% of non-MSH2/MLH1-mutant tumors (P < 0.0000001). Approximately 15% of EGFR mutations found may be actionable through TKI therapy, including N700D, G719D, T725M, T790M, and E884K. NTRK gene mutations were identified in MSH2/MLH1-mutant CRC including NTRK1 I699V, NTRK2 P716S, and NTRK3 R745L. Our findings have clinical relevance regarding therapeutic targeting of BRCA2 vulnerabilities, EGFR mutations or other identified oncogenic drivers such as NTRK in MSH2/MLH1-mutant CRCs or other tumors with mismatch repair deficiency.


Asunto(s)
Proteína BRCA2/genética , Neoplasias Colorrectales/genética , Receptores ErbB/genética , Mutación , Receptor trkA/genética , Receptor trkB/genética , Receptor trkC/genética , Proteína BRCA2/química , Estudios de Cohortes , Reparación de la Incompatibilidad de ADN/genética , Receptores ErbB/química , Frecuencia de los Genes , Humanos , Inestabilidad de Microsatélites , Modelos Moleculares , Homólogo 1 de la Proteína MutL/genética , Proteína 2 Homóloga a MutS/genética , Dominios Proteicos , Receptor trkA/química , Receptor trkB/química , Receptor trkC/química
13.
Psychopharmacology (Berl) ; 234(13): 2063-2075, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28466092

RESUMEN

RATIONALE: Repeated social defeat (RSD) increases the rewarding effects of cocaine in adolescent and adult rodents. OBJECTIVE: The aim of the present study was to compare the long-term effects of RSD on the conditioned rewarding effects of cocaine and levels of the transcription factors Pitx3 and Nurr1 in the ventral tegmental area (VTA), the dopamine transporter (DAT), the D2 dopamine receptor (D2DR) and precursor of brain-derived neurotrophic factor (proBDNF) signaling pathways, and the tropomyosin-related kinase B (TrkB) receptor in the nucleus accumbens (NAc) in adult and adolescent mice. METHODS: Male adolescent and young adult OF1 mice were exposed to four episodes of social defeat and were conditioned 3 weeks later with 1 mg/kg of cocaine. In a second set of mice, the expressions of the abovementioned dopaminergic and proBDNF and TrkB receptor were measured in VTA and NAc, respectively. RESULTS: Adolescent mice experienced social defeats less intensely than their adult counterparts and produced lower levels of corticosterone. However, both adult and adolescent defeated mice developed conditioned place preference for the compartment associated with this low dose of cocaine. Furthermore, only adolescent defeated mice displayed diminished levels of the transcription factors Pitx3 in the VTA, without changes in the expression of DAT and D2DR in the NAc. In addition, stressed adult mice showed a decreased expression of proBDNF and the TrkB receptor, while stressed adolescent mice exhibited increased expression of latter without changes in the former. CONCLUSION: Our findings suggest that dopaminergic pathways and proBDNF signaling and TrkB receptors play different roles in social defeat-stressed mice exposed to cocaine.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Encéfalo/metabolismo , Cocaína/farmacología , Condicionamiento Clásico/efectos de los fármacos , Corticosterona/metabolismo , Glicoproteínas de Membrana/metabolismo , Núcleo Accumbens/efectos de los fármacos , Precursores de Proteínas/fisiología , Receptor trkB/metabolismo , Receptores de Dopamina D2/metabolismo , Factores de Transcripción/metabolismo , Área Tegmental Ventral/efectos de los fármacos , Animales , Encéfalo/fisiología , Factor Neurotrófico Derivado del Encéfalo/química , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Condicionamiento Clásico/fisiología , Corticosterona/química , Dopamina/metabolismo , Masculino , Glicoproteínas de Membrana/química , Ratones , Precursores de Proteínas/química , Receptor trkB/química , Receptores de Dopamina D2/química , Recompensa , Estrés Psicológico/metabolismo
14.
Breast Cancer Res ; 19(1): 51, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28446206

RESUMEN

BACKGROUND: Patients with primary breast cancer that is positive for human epidermal growth factor receptor 2 (Her2+) have a high risk of developing metastases in the brain. Despite gains with systemic control of Her2+ disease using molecular therapies, brain metastases remain recalcitrant to therapeutic discovery. The clinical predilection of Her2+ breast cancer cells to colonize the brain likely relies on paracrine mechanisms. The neural niche poses unique selection pressures, and neoplastic cells that utilize the brain microenvironment may have a survival advantage. METHODS: Tropomyosin-related kinase B (TrkB), Her2, and downstream targets were analyzed in primary breast cancer, breast-to-brain metastasis (BBM) tissues, and tumor-derived cell lines using quantitative real-time PCR, western blot, and immunohistochemical assessment. TrkB function on BBM was confirmed with intracranial, intracardiac, or mammary fat pad xenografts in non-obese diabetic/severe combined immunodeficiency mice. The function of brain-derived neurotrophic factor (BDNF) on cell proliferation and TrkB/Her2 signaling and interactions were confirmed using selective shRNA knockdown and selective inhibitors. The physical interaction of Her2-TrkB was analyzed using electron microscopy, co-immunoprecipitation, and in silico analysis. Dual targeting of Her2 and TrkB was analyzed using clinically utilized treatments. RESULTS: We observed that patient tissues and cell lines derived from Her2+ human BBM displayed increased activation of TrkB, a neurotrophin receptor. BDNF, an extracellular neurotrophin, with roles in neuronal maturation and homeostasis, specifically binds to TrkB. TrkB knockdown in breast cancer cells led to decreased frequency and growth of brain metastasis in animal models, suggesting that circulating breast cancer cells entering the brain may take advantage of paracrine BDNF-TrkB signaling for colonization. In addition, we investigated a possible interaction between TrkB and Her2 receptors on brain metastatic breast cancer cells, and found that BDNF phosphorylated both its cognate TrkB receptor and the Her2 receptor in brain metastatic breast cancer cells. CONCLUSION: Collectively, our findings suggest that heterodimerization of Her2 and TrkB receptors gives breast cancer cells a survival advantage in the brain and that dual inhibition of these receptors may hold therapeutic potential.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias de la Mama/genética , Glicoproteínas de Membrana/genética , Receptor ErbB-2/genética , Receptor trkB/genética , Animales , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Factor Neurotrófico Derivado del Encéfalo/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/genética , Dimerización , Femenino , Humanos , Glicoproteínas de Membrana/química , Ratones , Receptor ErbB-2/química , Receptor trkB/química , Transducción de Señal/genética , Ensayos Antitumor por Modelo de Xenoinjerto
15.
J Pharmacol Exp Ther ; 361(3): 355-365, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28351853

RESUMEN

Brain-derived neurotrophic factor (BDNF) is a central modulator of neuronal development and synaptic plasticity in the central nervous system. This renders the BDNF-modulated tropomyosin receptor kinase B (TrkB) a promising drug target to treat synaptic dysfunctions. Using GRowth factor-driven expansion and INhibition of NotCH (GRINCH) during maturation, the so-called GRINCH neurons were derived from human-induced pluripotent stem cells. These GRINCH neurons were used as model cells for pharmacologic profiling of two TrkB-agonistic antibodies, hereafter referred to as AB2 and AB20 In next-generation sequencing studies, AB2 and AB20 stimulated transcriptional changes, which extensively overlapped with BDNF-driven transcriptional modulation. In regard to TrkB phosphorylation, both AB2 and AB20 were only about half as efficacious as BDNF; however, with respect to the TrkB downstream signaling, AB2 and AB20 displayed increased efficacy values, providing a stimulation at least comparable to BDNF in respect to VGF transcription, as well as of AKT and cAMP response element-binding protein phosphorylation. In a complex structure of the TrkB-d5 domain with AB20, determined by X-ray crystallography, the AB20 binding site was found to be allosteric in regard to the BDNF binding site, whereas AB2 was known to act orthosterically with BDNF. In agreement with this finding, AB2 and AB20 acted synergistically at greater concentrations to drive TrkB phosphorylation. Although TrkB downstream signaling declined faster after pulse stimulation with AB20 than with AB2, AB20 restimulated TrkB phosphorylation more efficiently than AB2. In conclusion, both antibodies displayed some limitations and some benefits in regard to future applications as therapeutic agents.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Neuronas/efectos de los fármacos , Receptor trkB/agonistas , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Factor Neurotrófico Derivado del Encéfalo/química , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/farmacología , Células CHO , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Inmunoglobulina G/farmacología , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptor trkB/química , Receptor trkB/metabolismo
16.
Vitam Horm ; 104: 1-18, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28215291

RESUMEN

Neurotrophins and their receptors (Trk) play key roles in the development of the nervous system and in cell survival. Trk receptors are therefore attractive pharmacological targets for brain disorders as well as for cancers. While the druggability of the extracellular domain of the receptors, that specifically binds neurotrophins, is yet to be proven, the intracellular kinase domains are attractive targets for small-molecule binding. The recent crystal structures of the three isoforms of the Trk family, TrkA, TrkB, and TrkC have been described in their apo forms and in complex with potent and selective pan-Trk inhibitors. The description of the kinase domain of each of the isoforms will be discussed in their apo forms or bound to potent inhibitors of interest in cancer therapy. Nononcology indications and selectivity issues will also be discussed.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Receptor trkA/metabolismo , Receptor trkB/metabolismo , Receptor trkC/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Apoenzimas/química , Apoenzimas/metabolismo , Sitios de Unión , Dominio Catalítico , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Ligandos , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/química , Conformación Molecular , Factores de Crecimiento Nervioso/química , Factores de Crecimiento Nervioso/metabolismo , Fenilalanina/química , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Receptor trkA/agonistas , Receptor trkA/antagonistas & inhibidores , Receptor trkA/química , Receptor trkB/agonistas , Receptor trkB/antagonistas & inhibidores , Receptor trkB/química , Receptor trkC/agonistas , Receptor trkC/antagonistas & inhibidores , Receptor trkC/química , Homología Estructural de Proteína
17.
Proc Natl Acad Sci U S A ; 114(3): E297-E306, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28039433

RESUMEN

Current therapies for chronic pain can have insufficient efficacy and lead to side effects, necessitating research of novel targets against pain. Although originally identified as an oncogene, Tropomyosin-related kinase A (TrkA) is linked to pain and elevated levels of NGF (the ligand for TrkA) are associated with chronic pain. Antibodies that block TrkA interaction with its ligand, NGF, are in clinical trials for pain relief. Here, we describe the identification of TrkA-specific inhibitors and the structural basis for their selectivity over other Trk family kinases. The X-ray structures reveal a binding site outside the kinase active site that uses residues from the kinase domain and the juxtamembrane region. Three modes of binding with the juxtamembrane region are characterized through a series of ligand-bound complexes. The structures indicate a critical pharmacophore on the compounds that leads to the distinct binding modes. The mode of interaction can allow TrkA selectivity over TrkB and TrkC or promiscuous, pan-Trk inhibition. This finding highlights the difficulty in characterizing the structure-activity relationship of a chemical series in the absence of structural information because of substantial differences in the interacting residues. These structures illustrate the flexibility of binding to sequences outside of-but adjacent to-the kinase domain of TrkA. This knowledge allows development of compounds with specificity for TrkA or the family of Trk proteins.


Asunto(s)
Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Receptor trkA/antagonistas & inhibidores , Receptor trkA/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Humanos , Cinética , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Modelos Moleculares , Conformación Proteica , Inhibidores de Proteínas Quinasas/síntesis química , Receptor trkA/genética , Receptor trkB/antagonistas & inhibidores , Receptor trkB/química , Receptor trkB/genética , Receptor trkC/antagonistas & inhibidores , Receptor trkC/química , Receptor trkC/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/efectos de los fármacos , Proteínas Recombinantes/genética , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie
18.
Drug Des Devel Ther ; 10: 3545-3553, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27843294

RESUMEN

BACKGROUND: Two dimeric dipeptides, bis-(N-monosuccinyl-l-seryl-l-lysine)hexamethylenediamide (GSB-106) and bis-(N-monosuccinyl-l-methionyl-l-serine) heptamethylenediamide (GSB-214), were designed based on the brain-derived neurotrophic factor (BDNF) loop 4 and loop 1 ß-turn sequences, respectively. Earlier, both of these dipeptides were shown to exhibit neuroprotective activity in vitro (10-5-10-8 M). The present study aimed to investigate the mechanisms of action of these peptides and their neuroprotective activity in an experimental stroke model. METHODS: We used western blot and HT-22 hippocampal neuronal cell line to investigate whether these peptides induced phosphorylation of the TrkB receptor and the AKT and ERK kinases. Rat middle cerebral artery occlusion (MCAO) was used as a stroke model. GSB-106 and GSB-214 were administered intraperitoneally (0.1 mg (1.3×10-7 mol)/kg) 4 hours after MCAO and daily for 7 days. The cerebral infarct volumes were measured with 2,3,5-triphenyltetrazolium chloride staining 21 days after MCAO. RESULTS: Both compounds were shown to elevate the TrkB phosphorylation level while having different post-receptor signaling patterns. GSB-106 activated the PI3K/AKT and MAPK/ERK pathways simultaneously, whereas GSB-214 activated the PI3K/AKT only. In experimental stroke, the reduction of cerebral infarct volume by GSB-106 (∼66%) was significantly greater than that of GSB-214 (∼28% reduction), which could be explained by the fundamental role of the MAPK/ERK pathway in neurogenesis and neuroplasticity. Notably, between these two dipeptides, only GSB-106 exhibited antidepressant activity, as was found previously. CONCLUSION: The results provided support for the beneficial pharmacological properties of BDNF loop 4 mimetic GSB-106, thereby suggesting a potential role for this dipeptide as a therapeutic agent.


Asunto(s)
Antidepresivos/farmacología , Western Blotting/métodos , Isquemia Encefálica/fisiopatología , Factor Neurotrófico Derivado del Encéfalo/química , Dipéptidos/farmacología , Hipocampo/fisiología , Lisina/química , Receptor trkB/química , Accidente Cerebrovascular/patología , Animales , Antidepresivos/química , Antidepresivos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/síntesis química , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Dipéptidos/síntesis química , Dipéptidos/química , Ratas , Ratas Sprague-Dawley , Receptor trkB/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
19.
Int J Mol Sci ; 16(9): 21087-108, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26404256

RESUMEN

7,8-dihydroxyflavone (7,8-DHF) is a TrkB receptor agonist, and treatment with this flavonoid derivative brings about an enhanced TrkB phosphorylation and promotes downstream cellular signalling. Flavonoids are also known to exert an inhibitory effect on the vascular endothelial growth factor receptor (VEGFR) family of tyrosine kinase receptors. VEGFR2 is one of the important receptors involved in the regulation of vasculogenesis and angiogenesis and has also been implicated to exhibit various neuroprotective roles. Its upregulation and uncontrolled activity is associated with a range of pathological conditions such as age-related macular degeneration and various proliferative disorders. In this study, we investigated molecular interactions of 7,8-DHF and its derivatives with both the TrkB receptor as well as VEGFR2. Using a combination of molecular docking and computational mapping tools involving molecular dynamics approaches we have elucidated additional residues and binding energies involved in 7,8-DHF interactions with the TrkB Ig2 domain and VEGFR2. Our investigations have revealed for the first time that 7,8-DHF has dual biochemical action and its treatment may have divergent effects on the TrkB via its extracellular Ig2 domain and on the VEGFR2 receptor through the intracellular kinase domain. Contrary to its agonistic effects on the TrkB receptor, 7,8-DHF was found to downregulate VEGFR2 phosphorylation both in 661W photoreceptor cells and in retinal tissue.


Asunto(s)
Flavonas/química , Flavonas/farmacología , Receptor trkB/química , Receptor trkB/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Sitios de Unión , Masculino , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fosforilación/efectos de los fármacos , Unión Proteica , Ratas , Ratas Sprague-Dawley , Retina/efectos de los fármacos , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/efectos de los fármacos , Células Fotorreceptoras Retinianas Conos/metabolismo , Transducción de Señal/efectos de los fármacos
20.
J Biol Chem ; 289(40): 27571-84, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25143381

RESUMEN

7,8-dihydroxyflavone (7,8-DHF), a newly identified small molecular TrkB receptor agonist, rapidly activates TrkB in both primary neurons and the rodent brain and mimics the physiological functions of the cognate ligand BDNF. Accumulating evidence supports that 7,8-DHF exerts neurotrophic effects in a TrkB-dependent manner. Nonetheless, the differences between 7,8-DHF and BDNF in activating TrkB remain incompletely understood. Here we show that 7,8-DHF and BDNF exhibit different TrkB activation kinetics in which TrkB maturation may be implicated. Employing two independent biophysical approaches, we confirm that 7,8-DHF interacts robustly with the TrkB extracellular domain, with a Kd of ∼10 nm. Although BDNF transiently activates TrkB, leading to receptor internalization and ubiquitination/degradation, in contrast, 7,8-DHF-triggered TrkB phosphorylation lasts for hours, and the internalized receptors are not degraded. Notably, primary neuronal maturation may be required for 7,8-DHF but not for BDNF to elicit the full spectrum of TrkB signaling cascades. Hence, 7,8-DHF interacts robustly with the TrkB receptor, and its agonistic effect may be mediated by neuronal development and maturation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/química , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Flavonas/metabolismo , Receptor trkB/metabolismo , Animales , Fenómenos Biofísicos , Factor Neurotrófico Derivado del Encéfalo/genética , Células Cultivadas , Flavonas/química , Humanos , Cinética , Neuronas/química , Neuronas/metabolismo , Unión Proteica , Ratas , Receptor trkB/agonistas , Receptor trkB/química , Receptor trkB/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...